Smart Charging, interoperability standards:

....and what it means...

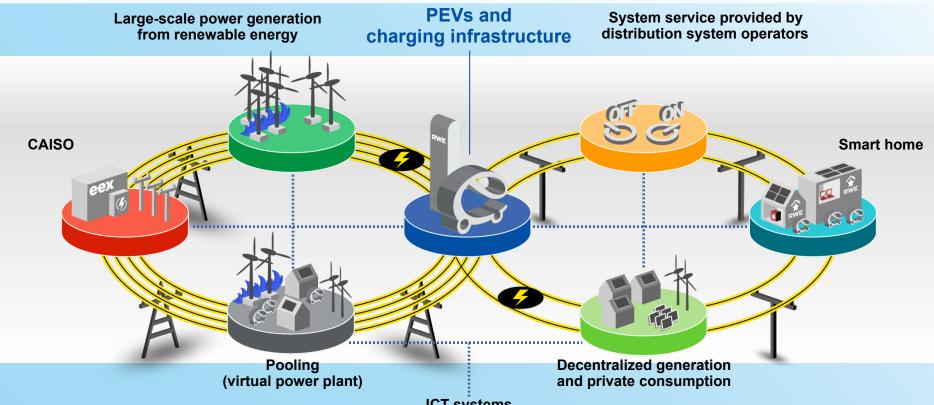
November 19, 2014 VGI California Energy Commission

Agenda

- What is California's 'VGI' vision?
- What is a Smart Charging standard?
- 3 What can the CEC do to support acceleration toward our vision?

Our Vision: A future where

- > any PEV owner can safely plug in (Level 2) anytime and anywhere and be dispatchable as a certified resource
- that helps system operators maintain reliable service while achieving our State RPS and GHG reduction goals
- > seamlessly without confusing the consumer
- > or impacting their transportation needs
- in a way that lowers their total cost of ownership.



"When's the best time to plant a tree?"

T. Boone Pickens

FOR THIS TO HAPPEN QUICKLY, WE NEED TO PLANT THE SEEDS NOW

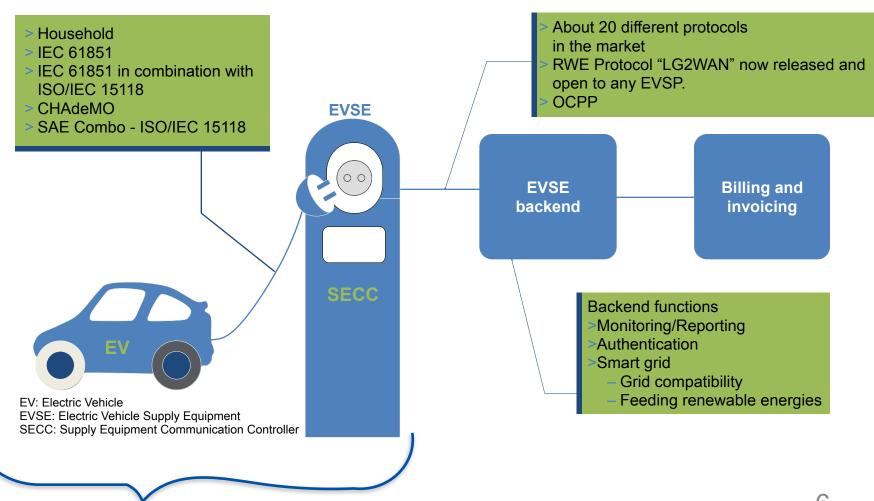
(1) - AC Level 2

ICT systems

Data exchange regarding demand and availability of electricity

TRANSMISSION GRID

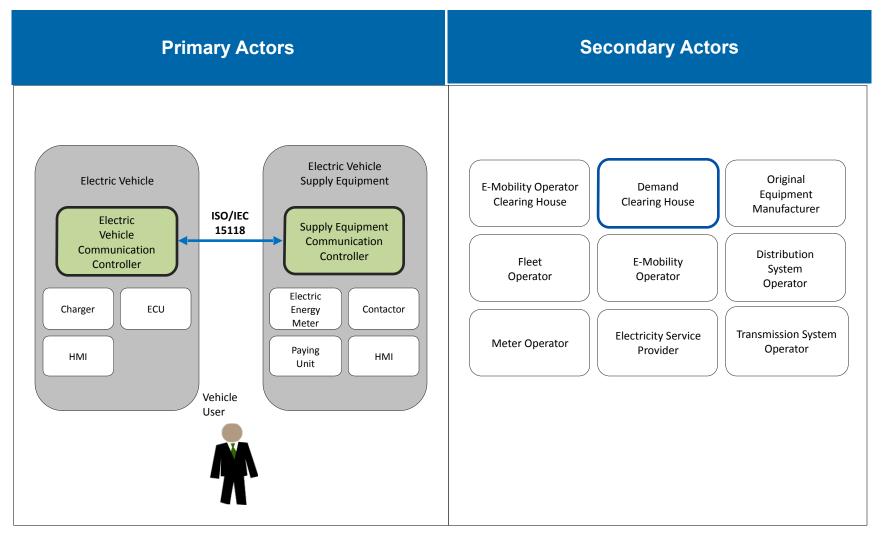
DISTRIBUTION GRID

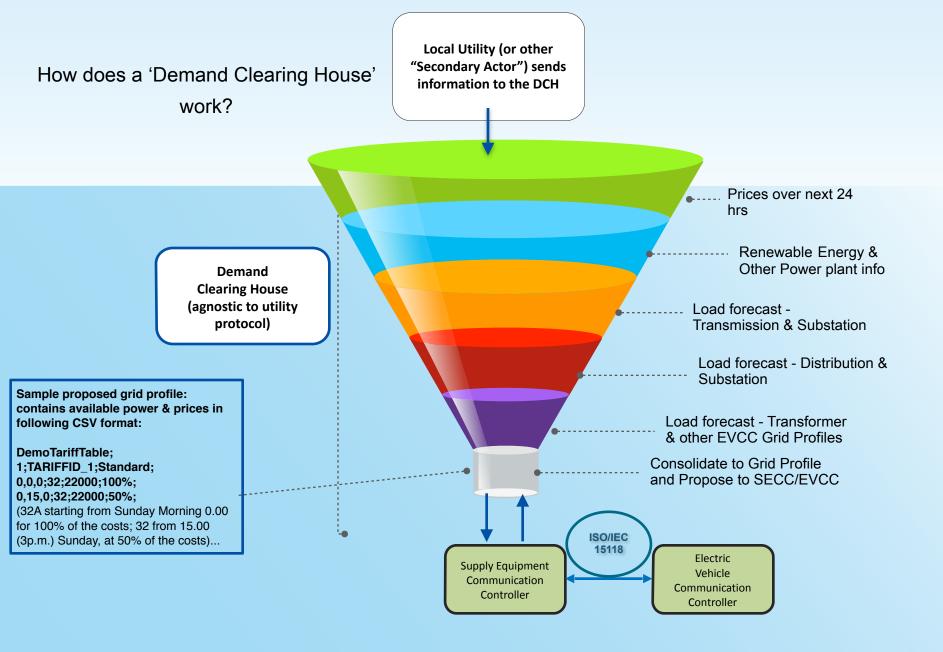


Agenda

- 1 What is our vision?
- 2 What is a Smart Charging standard?
- 3 What can the CEC do to support acceleration?

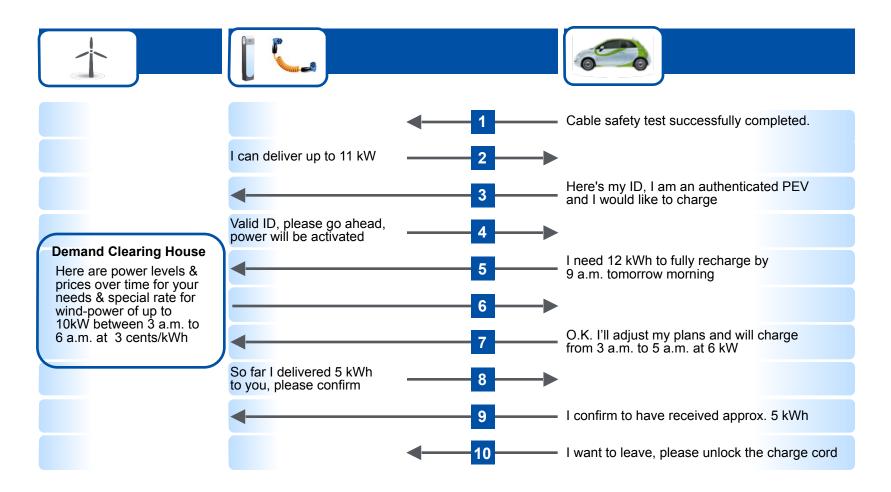
Where does smart charging begin and end?

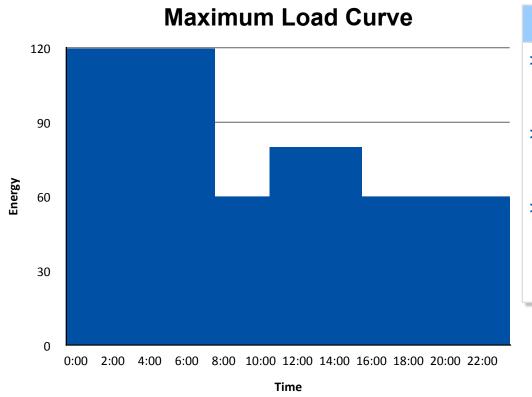




Commission Electrotechnique Internationale International Electrotechnical Commission Международная Электротехническая Комиссия

ISO/IEC 15118




Intelligent infrastructure – through standards Smarter...Faster...Simpler...for the consumer

EXAMPLE JOINT DEVELOPMENT OF DAIMLER AND RWE ISO / IEC 15118

Maximum load curves per time can be defined in a flexible way

Key Characteristics

- Minimum time gap between two limits has to be 15 min
- Interface for external data (e.g. PV supply) is defined as a Web-Service
- > Preferred charging, if renewable energy is available

UCSD Pilot: Smart cars connecting to smart chargers run by a smart grid: leads us where we want to go.

Advantages of the bidirectional communications protocol ISO/IEC 15118

Simplicity

- > Automated and seamless consumer experience
- > Lower Total Cost of Ownership
- > "Killer App" Transformation
- Any car, any charging station
 plug and play. BMW,
 Mercedes, VW and more on the way.

Grid-friendliness

- Collection of complete grid picture through standards
- Dispatch-ability as certified resource

"Demand Clearing House"

- System Operator has situation awareness
- Aggregation and resource certification
- Control room confidence over time

Agenda

- 1 What is our vision?
- What is a Smart Charging standard?
- 3 What can the policymakers do to support acceleration?

 Move Step-wise toward increasing complexity. Lay the foundation, and build scale working with the utilities and the CAISO.

PLANT THE TREE TO ENABLE GROWTH NOW

2014 - Base communication

- > Identification of users & Load Association
- > Automated billing
- > Pathway for E-Roaming

Local integration/ smart home

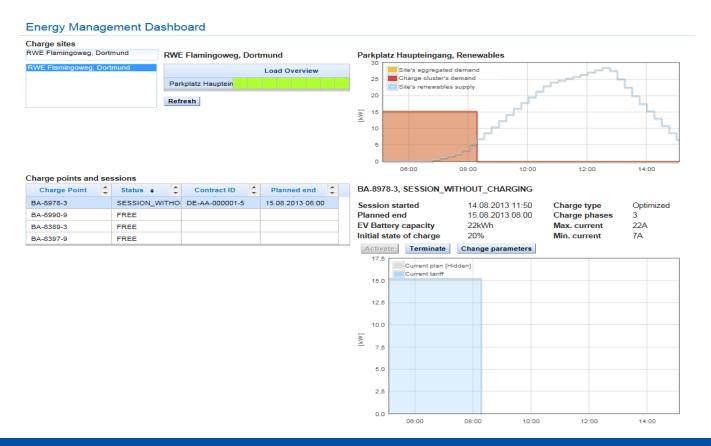
- Integration in users' local energy management system
- > Dynamic price-responsive charging

Load mgmt./ smart charging

- > Connection/integration with distribution grid
- > Remote or automatic load management

2022 - Integration of renewables

- > Bidirectional integration within grid
- Charging/re-feeding answering supply and demand



Deployment of smart grid along side with E-Mobility

DSO: Distribution System Operator V2G: Vehicle-to-grid energy flow control flow

Demand Energy Management "DEM" solution

Functionalities for Use Cases

- > Static load management can be done by definition of static supply / load curves for clusters of chargers
- > Dynamic load management possible by interface to external source, e.g. for predictive solar production
- > Enables demand-charge management

Thank you!

Schedule EV-TOU - DOMESTIC TIME-OF-USE FOR ELECTRIC VEHICLE CHARGING is specific to the charging of electric vehicles where the charging facility is separately metered . Effective 8/1/2014

SCHEDULE EV-TOU										Schedule	Schedule	Total
										DWR-BC Rate	EECC + DWR Credit Rate	Electric Rate
Energy Charges (\$/kWh)	Transm	Distr	PPP	ND	СТС	LGC	RS	TRAC	UDC Total			
Summer												
On-Peak	0.01861	0.08469	0.01178	0.00044	0.00140	0.00027	0.00029	(0.00782)	0.10966	0.00513	0.37129	0.48608
Off-Peak	0.01861	0.08469	0.01178	0.00044	0.00140	0.00027	0.00029	(0.00782)	0.10966	0.00513	0.09705	0.21184
Super Off-Peak	0.01861	0.08469	0.01178	0.00044	0.00140	0.00027	0.00029	(0.00782)	0.10966	0.00513	0.04787	0.16266
Winter												
On-Peak	0.01861	0.08469	0.01178	0.00044	0.00140	0.00027	0.00029	(0.00782)	0.10966	0.00513	0.09536	0.21015
Off-Peak	0.01861	0.08469	0.01178	0.00044	0.00140	0.00027	0.00029	(0.00782)	0.10966	0.00513	0.08375	0.19854
Super Off-Peak	0.01861	0.08469	0.01178	0.00044	0.00140	0.00027	0.00029	(0.00782)	0.10966	0.00513	0.06059	0.17538
Other Charges/Discounts											l	
Metering Charge	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			0.00
Minimum Bill	0.000	0.170	0.000	0.000	0.000	0.000	0.000	0.000	0.170			0.170

The total rates presented reflect the UDC rates associated with service under Schedule EV-TOU and the generation rates associated with Schedules EECC and DWR-BC.

The UDC rate-by-rate components presented are associated with service under Schedule EV-TOU as presented in the utility's tariff book. The TRAC charge includes the Residential Volumetric Rate Adjustment as described in Schedule GHG-ARR.

